Dynamics of Water Molecules in Micropores of AlPO₄-5 and SAPO-5 Studied by ¹H NMR

Kazuma Gotoh, Shin'ichi Ishimaru, and Ryuichi Ikeda Department of Chemistry, University of Tsukuba, Tsukuba 305-8571

(Received August 20, 2001; CL-010808)

Dynamics of water molecules in one-dimensional micropores AlPO₄-5 and SAPO-5 frameworks was studied by measuring ¹H NMR spectra, second moment M_2 of line-width and spin-lattice relaxation time T_1 . Although the presence of two kinds of water molecules free and bound on the capillary wall were reported in AlPO₄-5, our NMR T_1 results imply the absence of two kinds of H₂O motions, but the motional rate distributes from slow to fast jumps in both AlPO₄-5 and SAPO-5.

AlPO₄-5, one of typical aluminophosphate microporous crystals forms a one-dimensional homogeneous channel structure with a pore diameter of 0.73 nm. SAPO-5 has an analogous structure to that in AlPO₄-5, but a part of P (and Al) atoms in channel walls are replaced by Si, and hence, Brönsted acid sites are created on the pore surface. Molecules adsorbed in AlPO₄-5 and SAPO-5 can form one-dimensional molecular arrays which are expected to exhibit new structural and dynamical properties different from two or three dimensionally aggregated molecular systems.

From the measurement of ²H NMR spectra of ²H₂O in AlPO₄-5,^{1,2} Goldfarb et al. reported the presence of two kinds of water molecules in pores: one is free and the other is fixed on the wall. To study dynamics of H₂O motions affected by the wall structures in AlPO₄-5 and SAPO-5, we measured ¹H NMR spinlattice relaxation times (T_1), second moments of resonance lines (M_2) and spectra of H₂O adsorbed in AlPO₄-5 and SAPO-5.

AlPO₄-5 and SAPO-5 were synthesized according to the reported method.³ Obtained fine crystals of ca. 100 μ m long were calcined at ca. 990 K for 48 h and kept in vacuo at 393 K for 2 days, then exposed to saturated H₂O vapor. These specimens abbreviated to AlPO₄-5(H₂O) and SAPO-5(H₂O) were used for measurements.

X-Ray powder diffraction on calcined crystals were conducted for identifying the obtained samples. The Si/P atomic ratio in SAPO-5 was determined by a JEOL JXA-8621 electron probe microanalyser(EPMA) to be $9 \pm 1 / 91 \pm 1$. The water content in AlPO₄-5(H₂O) was obtained by thermo-gravimetry affording a weight loss of 22% at 360–370 K corresponding to the water desorption. Comparing this value with 21.96%⁴ reported, micropores in AlPO₄-5 are presumed to be almost filled with water molecules.

As shown in Figure 1, ¹H NMR spectra in AlPO₄-5(H₂O) and SAPO-5(H₂O) observed by a Bruker MSL-300 spectrometer exhibited a single peak with a width of 2.0 ± 0.1 kHz above room temperature. This implies that water molecules in both systems perform mostly the isotropic rotation in this temperature range. This result seems to be inconsistent with the reported ²H NMR spectra² showing a doublet structure even at 353 K. An almost temperature independent small splitting also observed in our ²H NMR measurement is attributable to the electric field gradient formed by charges on the pore wall. Our

rough calculation based on the point charge model supported this explanation. Upon cooling, a gradually growing broad component with a width of ca. 60 kHz appeared accompanied by a slowly broadening narrow peak suggesting two kinds of water molecules as reported.¹

Figure 2 shows M_2 observed by the solid echo method with a Bruker SXP-100 spectrometer in AlPO₄-5(H₂O) and SAPO-5(H₂O). M_2 of ca. $(30 \pm 5) \times 10^{-2}$ mT² observed at ca. 100 K agreed with 33.7×10^{-2} mT² calculated for the rigid water molecule. Above ca. 200 K, the echo signals in both systems showed barely separable two components in consistent with the foregoing ¹H spectra showing the superimposed broad and narrow signals. We could determine large M_2 components in both specimens and the small component of SAPO-5(H₂O). A small M_2 of $(0.5 \pm 0.1) \times 10^{-2}$ mT² in SAPO-5 above 220 K implies the onset of the H₂O isotropic rotation, and the large component showing a width of ca. 2.5×10^{-2} mT² in both systems at room temperature is attributed to the restricted water. It is noted that the gradual M_2 change over 150 K observed in both systems is unexplainable by the usual thermal activation process of molecular motions.

Figure 2. Temperature dependences of the second moment (M_2) of observed ¹H NMR absorptions in H₂O adsorbed in AlPO₄-5 (broad [O] component) and SAPO-5 (broad [\blacksquare] and sharp [\blacktriangle] components).

The small and the large M_2 observed below room temperature in both systems can correspond to the observed two ¹H spectrum components together with the reported narrow and

Copyright © 2001 The Chemical Society of Japan

Chemistry Letters 2001

broad ²H spectra.¹ These results imply the presence of free and fixed two kinds of H_2O molecules in micropores in accordance with the result reported by Goldfarb et al.¹

The recovery of ¹H magnetization in ¹H NMR T_1 measurement with a Bruker SXP-100 spectrometer showed nonexponential decay in the T_1 measurement. We divided this decay curve into two T_1 components, where the ratio of the short component vs the whole T_1 was ca. 1/10. Figure 3 shows the temperature and frequency dependences of only the long T_1 . The long T_1 component was assigned to H₂O adsorbed in micropores, while the short is attributable to H₂O located near trace of amounts of paramagnetic impurities formed in the wall which was observed by ESR.

We tried to fit the observed long T_1 data by superposed two BPP-type minima originating from reported two kinds of H₂O molecules in pores, but could not obtain satisfactory fit. T_1 observed in both systems below room temperature could not be expressed by the ω^2 rule expected from the conventional BPP theory⁵ in the range $\omega \tau_c >>1$. Moreover, the T_1 minimum of 21 ms observed at 14 MHz was much longer than 3.9 ms calculated for the isotropic rotation model derived from the above M_2 analysis. These results together with the gradual M_2 decrease observed over 150 K as noted above, can be explained by assuming the Cole–Davidson type τ_c distribution⁶ which can be expected from the presence of several kinds of water molecules with different environments in micropores. Conner has reported⁷ a distributed τ_c given by

$$g(\tau) = \frac{\sin \beta \pi}{\pi} \left(\frac{\tau}{\tau_c - \tau} \right)^{\beta} \qquad \tau \le \tau_c \tag{1}$$

where τ is the correlation time of the motion and β ($0 < \beta \le 1$) shows the distribution amplitude. Substituting eq 1 into the BPP equation, T_1 is given by

$$T_1^{-1} = \frac{2}{3}\gamma^2 \Delta M_2 \left\{ \frac{\tau_c \sin\left(\beta \tan^{-1}\omega\tau_c\right)}{\omega\tau_c \left(1 + \omega^2\tau_c^2\right)^{\beta/2}} + \frac{2\tau_c \sin\left(\beta \tan^{-1}2\omega\tau_c\right)}{\omega\tau_c \left(1 + 4\omega^2\tau_c^2\right)^{\beta/2}} \right\}$$
(2)

where γ , ΔM_2 and ω are the protonic magnetogyric ratio, the M_2 reduction by the motion, and the Larmor frequency, respective-

ly. The Arrhenius equation for the cut-off time τ_c is assumed by

$$\tau_{\rm c} = \tau_0 \, \exp \frac{E_a}{RT} \tag{3}$$

Here, $E_{\rm a}$ denotes the activation energy of the motion.

The observed values were fitted by superimposed two motional modes: the high-temperature mode **1** was assumed to have a τ_c distribution given by eq 1, while the low-temperature mode **2** is expressed by the BPP-type relaxation for simplicity. We assigned mode **1** to the H₂O isotropic rotation because M_2 less than 3×10^{-2} mT² above 250 K in AlPO₄-5(H₂O) was explained by this motion. Mode **2** was assigned to the 180°-flip because of the small ΔM_2 of 0.38×10^{-2} and 0.2×10^{-2} mT² observed in AlPO₄-5(H₂O) and SAPO-5(H₂O), respectively. This model is consistent with the reported ²H spectrum at 148 K¹ with a narrow component explainable by this motion of a part of H₂O in pores. The best fitted T_1 and determined motional parameters are shown in Figure 3 and Table 1, respectively.

Table 1. Motional parameters of water molecules derived from T_1 data.

Sample	Mode	E _s / kJ mol ⁻¹	$\frac{\Delta M_2}{10^{-2}} \text{mT}^2$	τ ₀ /s	ß
AlPO ₄ -5 (H ₂ O)	1 2	$\begin{array}{c} 50\pm 4\\ 3.0\pm 0.5\end{array}$	$\begin{array}{c} 33.5\pm2\\ 0.38\pm0.1 \end{array}$	4.0×10 ⁻¹⁷ 8.0×10 ⁻¹¹	0.15 ± 0.03 1 (BPP)
SAPO-5 (H ₂ O)	1 2	$\begin{array}{c} 40\pm3\\ 3.0\pm0.5\end{array}$	$\begin{array}{c} 29.3 \pm 2 \\ 0.21 \pm 0.1 \end{array}$	$\frac{4.0 \times 10^{-16}}{6.5 \times 10^{-11}}$	0.17 ± 0.03 1 (BPP)

It is noted that we obtained small β values of 0.15 ± 0.03 and 0.17 ± 0.03 in AlPO₄-5(H₂O) and SAPO-5(H₂O), respectively, indicating the presence of quite a wide τ_c distribution of the isotropic reorientation. This implies that the barrier for water rotation, i.e., the rotational jump rate is widely spread in capillaries. This conclusion is consistent with temperature dependences of M_2 in the present study and also reported ²H spectra¹ exhibiting a gradual change in a wide temperature range. We showed from the ¹H NMR spectra the presence of two kinds of water, free one in the central part in capillaries and the other fixed on the wall. Here, we have to say, however, that H₂O in micropores above ca. 200 K cannot be divided into the two groups, but they distribute between these two extreme states, namely, freely rotating and fixed in both molecular sieves.

Any detectable difference on H_2O dynamics in SAPO-5 from in $AIPO_4$ -5 was not observed in all NMR measurements despite of the existence of acid sites on the surface of micropores. The number of water molecules much larger than the acid site seems to smear out the effect of the site.

References

- 1 I. Kustanvich and D. Goldfarb, J. Phys. Chem., 95, 8818 (1991).
- 2 D. Goldfarb, Hong-Xin Li, and M. E. Davis, J. Am. Chem. Soc., 114, 3690 (1992).
- 3 D. Demuth, G. D. Stucky, K. K. Unger, and F. Schüth, *Microporous Mater.*, **3**, 473 (1995).
- 4 B. L. Newalker, R. V. Jasra, V. Kamath, and S. G. T. Bhat, *Microporous and Mesoporous Mater.*, 20, 129 (1998).
- 5 N. Bloembergen, E. M. Purcell, and R. V. Pound, *Phys. Rev.*, **73**, 679 (1948).
- 6 D. W. Davidson and R. H. Cole, J. Chem. Phys., 19, 1484 (1951).
- 7 T. M. Conner, Trans. Faraday Soc., 60, 1574 (1964).